MSE Master of Science in Engineering

The Swiss engineering master's degree


Chaque module vaut 3 ECTS. Vous sélectionnez 10 modules/30 ECTS parmi les catégories suivantes:

  • 12-15 crédits ECTS en Modules technico-scientifiques (TSM)
    Les modules TSM vous transmettent une compétence technique spécifique à votre orientation et complètent les modules de spécialisation décentralisés.
  • 9-12 crédits ECTS en Bases théoriques élargies (FTP)
    Les modules FTP traitent de bases théoriques telles que les mathématiques élevées, la physique, la théorie de l’information, la chimie, etc., vous permettant d’étendre votre profondeur scientifique abstraite et de contribuer à créer le lien important entre l’abstraction et l’application dans le domaine de l’innovation.
  • 6-9 crédits ECTS en Modules contextuels (CM)
    Les modules CM vous transmettent des compétences supplémentaires dans des domaines tels que la gestion des technologies, la gestion d’entreprise, la communication, la gestion de projets, le droit des brevets et des contrats, etc.

Le descriptif de module (download pdf) contient le détail des langues pour chaque module selon les catégories suivantes:

  • leçons
  • documentation
  • examen 
Numerical methods for building engineering (TSM_NumMeth)

Description of numerical methods and application in building thermodynamics and heat transfer. Modelling complex heat transfer through building construction and for modelling air movement outside and inside the building. Numerical methods for fire simulations. Modeling and solving practical problems in different fields of building engineering.

Compétences préalables

Solid knowledge in physics, thermodynamics and mathematics. 

Objectifs d'apprentissage

  1. Introduce the fundamentals of numerical methods used for the solution of engineering problems.

  2. Improve the competences in modeling practical engineering problems in different fields of building engineering.

  3. Improve the computer skills of the students.

Contenu des modules

 

Part 1) Numerical methods in building thermodynamics and heat transfer:

  • Numerical methods for modelling indoor and weather conditions (thermal comfort, indoor air quality, climatic conditions).
  • Heat conduction in building elements - steady state conditions.
  • Heat conduction in building elements - dynamic conditions:
    • Numerical solutions (Finite Differences);
    • Graphical solutions (Binder-Schmidt-Method);
    • Electrical analogy.
  • Models for the thermal balance of a room:
    • Steady state model;
    • Quasi steady state model;
    • Detailed model of the thermal balance of a room;
    • Models based on the thermal response of the room;
    • Boundary conditions on external surfaces.
  • Introduction to MATLAB software, application on test cases in fields of building engineering.
  • Introduction to IDA-ICE software, application on test cases in fields of building engineering.

Part 2) Numerical methods for modelling complex heat transfer through building construction and for modelling air movement outside and inside the building (Ansys CFX / Ansys Fluent / OpenFOAM).

Part 3) Numerical methods for fire simulations (FDS).

 

Méthodes d'enseignement et d'apprentissage

  • 3 lecture periods per week, with integrated exercise sessions.
  • Teaching: Frontal teaching and storytelling. Discussion of practical cases. Guided learning using lecture notes and textbooks.
  • Exercises: Solving practical problems under the guidance of the tutors (problem solving, modeling and programming in MATLAB, IDA-ICE, Ansys, OpenFOAM, FDS).

Bibliographie

  • Chapra, S. C., Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw-Hill, 2005.

  • Rao, S. S., Applied Numerical Methods for Engineers and Scientists, Prentice-Hall, 2002.

  • Incropera, F.P., DeWitt, D.P. , Bergman T.L., Lavine, A. S., Incropera's Principles of Heat and Mass Transfer: Global Edition. Wiley, 2017.

Télécharger le descriptif complet

Retour