MSE Master of Science in Engineering

The Swiss engineering master's degree


Jedes Modul umfasst 3 ECTS. Sie wählen insgesamt 10 Module/30 ECTS in den folgenden Modulkategorien:

  • ​​​​12-15 ECTS in Technisch-wissenschaftlichen Modulen (TSM)
    TSM-Module vermitteln Ihnen profilspezifische Fachkompetenz und ergänzen die dezentralen Vertiefungsmodule.
  • 9-12 ECTS in Erweiterten theoretischen Grundlagen (FTP)
    FTP-Module behandeln theoretische Grundlagen wie die höhere Mathematik, Physik, Informationstheorie, Chemie usw. Sie erweitern Ihre abstrakte, wissenschaftliche Tiefe und tragen dazu bei, den für die Innovation wichtigen Bogen zwischen Abstraktion und Anwendung spannen zu können.
  • 6-9 ECTS in Kontextmodulen (CM)
    CM-Module vermitteln Ihnen Zusatzkompetenzen aus Bereichen wie Technologiemanagement, Betriebswirtschaft, Kommunikation, Projektmanagement, Patentrecht, Vertragsrecht usw.

In der Modulbeschreibung (siehe: Herunterladen der vollständigen Modulbeschreibung) finden Sie die kompletten Sprachangaben je Modul, unterteilt in die folgenden Kategorien:

  • Unterricht
  • Dokumentation
  • Prüfung
Engineering of Industrial Robots (TSM_IndRobot)

 

The course targets technical and application challenges related to the design of advanced robotic solutions for industrial and service applications. It addresses the design, engineering and optimization of serial and parallel kinematics robotic arms, as well as of mobile platforms.

 

The course will cover theoretical content and practical activities of mechanical design, programming and simulation, as well as laboratory experiences with real hardware

 

Industrial use cases and service use cases will be addressed during the application/laboratory activities, specifically dealing with cutting-edge solutions and challenging markets demanding advanced robotic platform.

 

The laboratory ctivities will involve the use of industrial robots, cobots, and both commercial and experimental mobile platforms (wheeled and legged), to demonstrate course topics and to support the students in developing their projects and testing some of the designed hardware solutions.


 

Eintrittskompetenzen

  • Linear algebra
  • Basics of mechanics (statics and kinematics)
  • Mechanical design (recommended)
  • Basic programming skills
  • Basics of robotics (recommended)

 


Lernziele

 

The learning objectives are:

 

 

  • Ability to select a robotic platform starting from specific use cases requirements as well as productivity and safety KPIs
  • Design, engineer, analyze statically and dynamically a robotic solution
  • Design accessories (tools, fixturing, sensors), including vision-based perception systems

 

Modulinhalt

 

Robotics basics review

 

  • Position and orientation
  • Kinematics
  • Dynamics
  • Trajectory and motion planning

Engineering

of arm-type robots

  • Problem statement: reference industrial task
  • Serial and parallel robot architectures
  • Workcell configuration: kinematic model, reach, tools, sensors
  • Structural design, computation of inertias
  • Design and dimensioning of actuators and transmission mechanisms
  • Tool, fixturing, services design
  • Motion simulation and optimization
  • Design of vision-based sensing solutions

 

Engineering

of mobile robots

 

  • Problem statement: reference industrial task
  • Kinematic models for wheeled robots
  • Kinematic models for legged robots
  • Robot configuration: kinematic model, tools, sensors
  • Locomotion system design
  • Path planning and motion simulation
  • Design of vision-based navigation system

 

Lehr- und Lernmethoden

  • Interactive lectures
  • Tutorials in presence with lab equipment
  • Self-study with exercises and assignments

Bibliografie

P. Corke, “Robotics, Vision and Control”. Springer Cham, 2nd edition (2017). 

B. Siciliano, O. Khatib, “Springer Handbook of Robotics”. Springer Berlin, Heidelberg (2008).

Vollständige Modulbeschreibung herunterladen

Zurück