Jedes Modul umfasst 3 ECTS. Sie wählen insgesamt 10 Module/30 ECTS in den folgenden Modulkategorien:
- 12-15 ECTS in Technisch-wissenschaftlichen Modulen (TSM)
TSM-Module vermitteln Ihnen profilspezifische Fachkompetenz und ergänzen die dezentralen Vertiefungsmodule. - 9-12 ECTS in Erweiterten theoretischen Grundlagen (FTP)
FTP-Module behandeln theoretische Grundlagen wie die höhere Mathematik, Physik, Informationstheorie, Chemie usw. Sie erweitern Ihre abstrakte, wissenschaftliche Tiefe und tragen dazu bei, den für die Innovation wichtigen Bogen zwischen Abstraktion und Anwendung spannen zu können. - 6-9 ECTS in Kontextmodulen (CM)
CM-Module vermitteln Ihnen Zusatzkompetenzen aus Bereichen wie Technologiemanagement, Betriebswirtschaft, Kommunikation, Projektmanagement, Patentrecht, Vertragsrecht usw.
In der Modulbeschreibung (siehe: Herunterladen der vollständigen Modulbeschreibung) finden Sie die kompletten Sprachangaben je Modul, unterteilt in die folgenden Kategorien:
- Unterricht
- Dokumentation
- Prüfung
The objective of the course is to gain the competence to understand the current scientific topics in the field of photovoltaic and battery research and to have the opportunity to familiarise oneself with a special area of research. After a short compact course on the basics of photovoltaics, the current module technology, production of modules and topics from systems engineering will be covered. Another focus of the course is battery technology.
Eintrittskompetenzen
Basics in Physics, Electronics
Lernziele
The aim of the course is to gain an in-depth understanding of photovoltaic and battery technology. Students gain a broad knowledge of the subject area and are able to apply the knowledge they have acquired to assess specific practical issues. After completing the course, students should be able to understand the content of scientific conferences in the field of photovoltaics and battery technology and provide new impulses for the further development of the technology themselves.
Modulinhalt
Chapter 1: Basic photovoltaics 2×3 lectures
Fundamentals of photovoltaic systems: Solar resources, irradiance vs. irradiation, energy yield estimation, components of PV systems, types of PV systems, operating principles of PV inverters, hybrid inverters and backup systems LCOE, ecology.
Semiconductor basics, p/n junction, working principle of solar cells, absorption edge, I/V curve, efficiency limit, recombination losses
Chapter 2: Solar modules 2×3 lectures
Production of silicon solar modules: metallurgical silicon, polysilicon, ingot, wafer, solar cell, module
Thin film modules, production technology, electrical characteristics, applications
Crystalline silicon solar modules 1: Module construction, encapsulants, solar glass, wafer size, half cells, PERC, TOPCon, HJ, IBC, perovskite silicon tandem
Chapter 3: Solar modules in operation 2×3 lectures
Crystalline silicon solar modules 2: Electrical characteristics. Study of IV curve, partly shading, shading tolerant modules
Crystalline silicon solar modules 3: Reliability, lifetime degradation rates, types (LID, LeTID, PID, UV), Accelerated aging
Chapter 4: System technology 2×3 lectures
PV inverters, MPP tracking strategies, power optimisers, inverter behaviour in partial shading conditions
Energy yield and loss calculation of PV systems
Chapter 5: Battery technologies 3×3 lectures
Energy Storage introduction, Battery history, Electrochemistry basics and Li ion battery materials
Battery Performance, System design and lifetime mechanisms
Battery Safety, End of life options, Market overview and Application example
Chapter 6: PV integration 2×3 lectures
PV system design: Matching modules, inverters and power optimisers
Choice of system topologies for specific situations
PV in the power system: Grid integration strategies
Lehr- und Lernmethoden
- Lecture, discussion and tutorials, exercises, case studies
- Exercises using basic mathematics and several public software tools
Vollständige Modulbeschreibung herunterladen
Zurück