MSE Master of Science in Engineering

The Swiss engineering master's degree


Each module contains 3 ECTS. You choose a total of 10 modules/30 ECTS in the following module categories: 

  • 12-15 ECTS in technical scientific modules (TSM)
    TSM modules teach profile-specific specialist skills and supplement the decentralised specialisation modules.
  • 9-12 ECTS in fundamental theoretical principles modules (FTP)
    FTP modules deal with theoretical fundamentals such as higher mathematics, physics, information theory, chemistry, etc. They will teach more detailed, abstract scientific knowledge and help you to bridge the gap between abstraction and application that is so important for innovation.
  • 6-9 ECTS in context modules (CM)
    CM modules will impart additional skills in areas such as technology management, business administration, communication, project management, patent law, contract law, etc.

In the module description (download pdf) you find the entire language information per module divided into the following categories:

  • instruction
  • documentation
  • examination 
Applied Electromagnetics (TSM_AppElm)

This module offers a comprehensive introduction and provides fundamental tools for electromagnetic field theory, up to modern numerical methods for solving the field equations and state-of-the-art simulation techniques. The global objective is to provide a deep theoretical knowledge in electromagnetic field from low frequency domain (required for electrical machines as example) up to radio- frequency domain (required in domains of RF-antennas).


Prerequisites

Knowledge on vectorial algebra, multivariable functions, ordinary and partial differential equations

Learning Objectives

 

This module offers a comprehensive introduction into electromagnetic field theory and its relevant applications, modern numerical methods for solving the field equations, and state-of-the-art simulation techniques. This aim is to present tools and formalism leading to the understanding of following items:

 

  • Fundamental equations of the electromagnetic field theory.
  • Finite difference time domain. Finite element method. Finite integral method.
  • From low to super high frequency domain.


Contents of Module

 

1. Fundamental equations of the electromagnetic field theory (20%)

 

  • Maxwell equations
  • Static and quasi-static analysis (electric and magnetic field simulation, computation of the electric capacitance and magnetic inductance, eddy currents, skin effect, proximity effect, energy, and magnetic force)
  • Emission, propagation and reception of electromagnetic waves
  • Eigenvalue problems (waveguide, antenna, resonator)

 

2. Finite difference time domain (FDTD) (20%)

 

  • 2-D and 3-D FDTD theory (Cartesian grid, discretization of Maxwell equations, stability criterion, etc.) and practical experience
  • FDTD simulations (wave propagation, antenna, etc.)

 

3. Finite element method (FEM) for electromagnetic simulations (20%)

 

  • Scalar FEM (electrostatic, magnetostatic, eddy currents, etc.)
  • Vector FEM (3-D eddy currents, wave propagation, eigenvalue problems, etc.)

 

4. Examples of practical application (40%)

 

  • Dielectric simulations of high voltage devices
  • Electromagnetic simulations of electrical machines
  • Eddy-current analysis
  • Electromagnetic simulations of actuators and sensors
  • Eigenvalue analysis of filters and waveguides
  • Electromagnetic simulations of RF-antennas
  • Electromagnetic analysis of microstrip structures
  • Electromagnetic meta-materials


Teaching and Learning Methods

This course involves theoretical presentations and practical exercises

Own laptop computer is necessary

Literature

Lecture slides, references to internet resources and books

 

Download full module description

Back