MSE Master of Science in Engineering

The Swiss engineering master's degree


Jedes Modul umfasst 3 ECTS. Sie wählen insgesamt 10 Module/30 ECTS in den folgenden Modulkategorien:

  • ​​​​12-15 ECTS in Technisch-wissenschaftlichen Modulen (TSM)
    TSM-Module vermitteln Ihnen profilspezifische Fachkompetenz und ergänzen die dezentralen Vertiefungsmodule.
  • 9-12 ECTS in Erweiterten theoretischen Grundlagen (FTP)
    FTP-Module behandeln theoretische Grundlagen wie die höhere Mathematik, Physik, Informationstheorie, Chemie usw. Sie erweitern Ihre abstrakte, wissenschaftliche Tiefe und tragen dazu bei, den für die Innovation wichtigen Bogen zwischen Abstraktion und Anwendung spannen zu können.
  • 6-9 ECTS in Kontextmodulen (CM)
    CM-Module vermitteln Ihnen Zusatzkompetenzen aus Bereichen wie Technologiemanagement, Betriebswirtschaft, Kommunikation, Projektmanagement, Patentrecht, Vertragsrecht usw.

In der Modulbeschreibung (siehe: Herunterladen der vollständigen Modulbeschreibung) finden Sie die kompletten Sprachangaben je Modul, unterteilt in die folgenden Kategorien:

  • Unterricht
  • Dokumentation
  • Prüfung
Multiphysics (FTP_Multiphy)

The module gives students insight into the modeling and simulation of coupled effects (multiphysics). The module provides an overview on the different application fields of multiphysics modeling and simulation in industry. Students learn the methodical procedures that are necessary for successfully solving modeling and simulation problems in the different areas of engineering and physics. The consolidation and deepening of the theoretical knowledge is achieved on the basis of specific problems that are solved with the appropriate methods and programs (MATLAB, Comsol Multiphysics).

Eintrittskompetenzen

  • Bachelor level in physics and mathematics (Newtonian mechanics, ordinary differential equations, elementary knowledge in vector and matrix calculation).
  • Elementary knowledge of MatLab or similar software packages

Lernziele

Students are in a position to model and simulate local and spatially distributed systems of the type that are encountered in the engineering sciences.

Students are in a position to describe a real problem in physical and mathematical terms. They are able to recognize symmetries and to benefit from them. They are aware of which simplifications can be made and what influence they have on the results. The students know different numerical solution methods and the available equation solvers and finite element packages for solving coupled partial differential equations.

Students learn how to develop reliable models, to validate these and to designate their validity limits.

Students are in a position to critically interpret simulation results.

Modulinhalt

  • Modeling uncoupled physical phenomena through the application of conservation equations and material laws: transport of mass, energy, charge, momentum. Structural mechanics and flow mechanics are similarly covered in the course.
  • Introduction to electromagnetic field modelling (Maxwell’s equations).
  • Numerical discretization methods for solving partial differential equations: finite differences, finite elements, finite volumes and time discretization.
  • Analysis of a multiphysics problem which is formulated analytically and can be solved with paper and pencil, e.g. coupling charge and energy transport in a single dimension.
  • Introduction to the modeling of multiphysics problems that are solved with the finite element method. Exercises on the computer: input of the model geometry, generating a discretization grid, specification of physical material properties in the model.
  • Case studies and exercises on the modeling of coupled problems: thermoelectric transport, capacitive and inductive sensors for static and quasistatic problems, structural mechanics, coupling an incompressible flow with energy transport, modeling of a fuel cell to convert chemical energy (hydrogen) into electrical energy.
  • Advanced multiphysics modeling: "coefficient form" of a scalar conservation equation, conversion of a partial differential equation into the weak form. The weak form constitutes the basis for the finite element method.
  • Model validation and recognition of the validity limits of a model.

Lehr- und Lernmethoden

  • Frontal teaching
  • Practical work with suitable software packages
  • Exercises
  • Private study and literature study
  • Individual and group assignments

Bibliografie

Jose Alberty, Josef Bürgler, Sven Friedel, Paul Ledger, Jürgen Schumacher, "Multiphysics Modeling and Simulation", course handout, Master of Science in Engineering (MSE).

 

Vollständige Modulbeschreibung herunterladen

Zurück