MSE Master of Science in Engineering

The Swiss engineering master's degree


Chaque module vaut 3 ECTS. Vous sélectionnez 10 modules/30 ECTS parmi les catégories suivantes:

  • 12-15 crédits ECTS en Modules technico-scientifiques (TSM)
    Les modules TSM vous transmettent une compétence technique spécifique à votre orientation et complètent les modules de spécialisation décentralisés.
  • 9-12 crédits ECTS en Bases théoriques élargies (FTP)
    Les modules FTP traitent de bases théoriques telles que les mathématiques élevées, la physique, la théorie de l’information, la chimie, etc., vous permettant d’étendre votre profondeur scientifique abstraite et de contribuer à créer le lien important entre l’abstraction et l’application dans le domaine de l’innovation.
  • 6-9 crédits ECTS en Modules contextuels (CM)
    Les modules CM vous transmettent des compétences supplémentaires dans des domaines tels que la gestion des technologies, la gestion d’entreprise, la communication, la gestion de projets, le droit des brevets et des contrats, etc.

Le descriptif de module (download pdf) contient le détail des langues pour chaque module selon les catégories suivantes:

  • leçons
  • documentation
  • examen 
Smart services (CM_SmartSer)

 

Smart Service Design and Engineering - Value Creation:

  • Basics of Smart Service Design (Customer insight, customer journey, value proposition design, use of data insights)
  • Selected topics of Service Science and Service Dominant Logic
  • Service blueprinting as a relevant step in the service engineering process
  • Characteristics of Data Services and Data Products
  • Use of data in the smart service design process and in the services themselves - Smart Data
  • data sources
  • Iterative improvement up to product maturity
  • Discussion of applications in the industrial and the sector
  • Discussion of real-life cases

Smart Business Model Design - Value Capturing:

  • Fundamentals for Engineering Value Flows in Service Ecosystems and Service Business Models
  • From Service Blueprint to Business Model
  • Quantification of service business models
  • Basics Business Model Design and Business Model Canvas
  • Service Ecosystem Design
  • Quantification of the business model
  • Discussion of real-life cases

Data Protection, Data Security, Data Ethics:

  • Fundamentals of data protection and data security
  • Relevant aspects for Data Product Design
  • Legal aspects vs. ethics
  • Discussion of real-life cases

Compétences préalables

Prior to joining the module, the students should have an understanding of business process modeling and engineering, e.g., terms like process charts, swimlanes, process models, resources, value chain etc. (see, e.g., the paper of John Krogstie: Introduction to Business Processes and Business Process Modeling, https://link.springer.com/chapter/10.1007/978-3-319-42512-2_1)

Objectifs d'apprentissage

  • Understand and apply the essential principles of Smart Service Design and Engineering - i.e. the development of intelligent services on the basis of data (comprehensive methods for the development of novel data-driven services, for their operation as well as their improvement in operations).
  • Able to integrate the data specific aspects into their service design.
  • Apply the methods of data-driven service engineering in practical case studies primarily in industrial envi-ronments (B2B), but also in consumer areas (B2C)
  • Know and understand the relevant basics of Service Business Model Design including the types of industrial Service Models.
  • Evaluate these business models quantitatively. To weigh up variants and draw conclusions about the engineering process with the aim of achieving an opera-tionally and economically balanced model.
  • Understand the design of service ecosystems.
  • Able to understand the essential principles of data protection, data security, and data ethics.

Contenu des modules

Smart Service Design and Engineering - Value Creation: 40%
Smart Business Model Design - Value Capturing: 40%
Data Protection, Data Security, Data Ethics: 20%

Méthodes d'enseignement et d'apprentissage

  • Lectures
  • Group work, presentation and discussion of case studies
  • Self study of papers and analysis of business case studies

Bibliographie

  • A. Wierse, T. Riedel: Smart Data Analytics, Walter de Gruyter, 2017.
  • A. Polaine, L. Løvlie, B. Reason, Service Design: From Insight to Implementation, Rosenfeld, 2013.
  • A. Osterwalder, Y. Pigneur et al., Value Proposition Design: How to Create Products and Services Customers Want, Wiley, 2014.
  • E. Siegel, Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, Wiley, 2016.
  • F. Provost, T. Fawcett, Data Science for Business: What you need to know about data mining and data-analytic thinking, O'Reilly, 2013.
  • A. Osterwalder, Y. Pigneur, Business Model Generation, Wiley, 2010.
  • C. Kowalkowski, W. Ulaga: Service strategy in action: a practical guide for growing your B2B service and solution business, Service Strategy Press, 2017.
  • O. Gassmann, K. Frankenberger, M. Csik:  Business Model Navigator: 55 Models That Will Revolutionise Your Business, Harlow Pearson, 2014.
  • D. S. Evans, R. Schmalensee, Matchmakers, Matchmakers: The New Economics of Multisided Platforms, Harvard Business Review Press, 2016.
  • W. Stallings, Cryptography and Network Security: Principles and Practice (7th Edition), Pearson, 2016.
  • N. Passadelis et al., Datenschutzrecht, Beraten in Privatwirtschaft und öffentlicher Verwaltung, Basel 2015.
  • Stickdorn, Marc, Markus Edgar Hormess, Adam Lawrence, and Jakob Schneider 2018: This Is Service Design Doing: Applying Service Design Thinking in the Real World. O’Reilly Media, Inc.

Télécharger le descriptif complet

Retour