MSE Master of Science in Engineering

The Swiss engineering master's degree


Chaque module vaut 3 ECTS. Vous sélectionnez 10 modules/30 ECTS parmi les catégories suivantes:

  • 12-15 crédits ECTS en Modules technico-scientifiques (TSM)
    Les modules TSM vous transmettent une compétence technique spécifique à votre orientation et complètent les modules de spécialisation décentralisés.
  • 9-12 crédits ECTS en Bases théoriques élargies (FTP)
    Les modules FTP traitent de bases théoriques telles que les mathématiques élevées, la physique, la théorie de l’information, la chimie, etc., vous permettant d’étendre votre profondeur scientifique abstraite et de contribuer à créer le lien important entre l’abstraction et l’application dans le domaine de l’innovation.
  • 6-9 crédits ECTS en Modules contextuels (CM)
    Les modules CM vous transmettent des compétences supplémentaires dans des domaines tels que la gestion des technologies, la gestion d’entreprise, la communication, la gestion de projets, le droit des brevets et des contrats, etc.

Le descriptif de module (download pdf) contient le détail des langues pour chaque module selon les catégories suivantes:

  • leçons
  • documentation
  • examen 
Vectors and Tensors in Engineering Physics (FTP_Tensors)

The course starts with an overview of classical engineering physics with special emphasis of balance and constitutive equations (i.e., continuity equations and material laws). The basic concepts of vector analysis are applied to electrodynamics, various transport phenomena, mechanical elasticity and piezo-electric effects. The concept of tensors enables the description of important anisotropic effects of solid state physics. These effects are present in crystals as well as in layered material systems, which are more and more used in modern technology. The given overview facilitates the student’s understanding and application of numerical simulation methods (e.g., FEA, multiphysics).

Compétences préalables

  • Physics, analysis, linear algebra at Bachelor’s level ,
  • The mathematical prerequisites are covered by the chapter 7-9 of [4]. The summaries of these chapters are in the appendix of this document.

Objectifs d'apprentissage

  • Students are familiar with the most important basic laws of engineering physics for isotropic materials in general view form, recognize analogies between different application areas and exploit these for analyzing systems
  • Students know about the generalization of the laws for anisotropic materials and can interpret these, especially with regard to application in numerical simulation
  • Students master vector analysis and the algebra of tensors together with the standard notation conventions
  • Students understand the basics of electrodynamics and transport phenomena for anisotropic systems
  • Students understand mechanical elasticity with 3D strain and stress states and are familiar with the material laws in general form for isotropic and anisotropic bodies
  • Students understand the piezo-electric effect and its applications in engineering (sensors and actuators)

Contenu des modules

  • Recapitulation of isotropic material laws (Ohm, Hook, electric polarization, heat conduction)
  • Introduction to vector and tensor calculation: scalar, vectorial and tensorial parameters, tensor algebra,
  • Transformation behavior of vectors and tensors
  • Hands-on calculation of vector analysis and tensoralgebra: electrodynamics and anisotropic transport phenomena
  • Elasticity theory with emphasis on 3D stress states
  • Piezo-effect: physical fundamentals
Week Subject
MW1 Introduction, motivation, repetition of fundamental physical laws from engineering physics
MW2 Scalars, vectors, divergence, gradient, curl
MW3 Integral theorems and applications of vector analysis in physics
MW4 Maxwell I: Electro- and magnetostatics
MW5 Fundamental mathematical properties of tensors, transformations of tensors
MW6 Transport phenomena, Ohm’s law,  heat conduction and diffusion
MW7 Elasticity: stress and distortion tensor, thermal expansion
MW8 Elasticity: Hooke’s law, tensors of the fourth rank, engineering diagram
MW9 Elasticity: 3D stress and distortion states
MW10 Elasticity: 3D stress and distortion states
MW11 Reserve
MW12 Maxwell II: Electrodynamics
MW13 Maxwell III: Waves, Maxwell
MW14 Piezoelectricity

Méthodes d'enseignement et d'apprentissage

Frontal teaching (approx. 60 %)
Presentation and discussion of case studies and problems, individual problem solving (approx. 40 %)

Bibliographie

[1] R.E. Newham, Properties of Materials, Oxford, 2005

[2] J.F. Nye, Physical Properties of Crystals, Oxford Science Publication, 2004

[3] J.Tichy, Fundamentals of Piezoelectric Sensorics, Springer 2010

[4] E. Kreszig, Advanced Engineering Mathematics, 10th edition, Wiley, 2011

Télécharger le descriptif complet

Retour