Chaque module vaut 3 ECTS. Vous sélectionnez 10 modules/30 ECTS parmi les catégories suivantes:
- 12-15 crédits ECTS en Modules technico-scientifiques (TSM)
Les modules TSM vous transmettent une compétence technique spécifique à votre orientation et complètent les modules de spécialisation décentralisés. - 9-12 crédits ECTS en Bases théoriques élargies (FTP)
Les modules FTP traitent de bases théoriques telles que les mathématiques élevées, la physique, la théorie de l’information, la chimie, etc., vous permettant d’étendre votre profondeur scientifique abstraite et de contribuer à créer le lien important entre l’abstraction et l’application dans le domaine de l’innovation. - 6-9 crédits ECTS en Modules contextuels (CM)
Les modules CM vous transmettent des compétences supplémentaires dans des domaines tels que la gestion des technologies, la gestion d’entreprise, la communication, la gestion de projets, le droit des brevets et des contrats, etc.
Le descriptif de module (download pdf) contient le détail des langues pour chaque module selon les catégories suivantes:
- leçons
- documentation
- examen
The course deals with fundamental and technical issues associated with designing and maintaining structures that resist failure from cyclic loading. Students will be taught the principles of fatigue testing and analyzing fatigue failures of materials, addressing the questions of how fatigue behaviour is characterized, how fatigue failure is predicted, which physical mechanisms are responsible for fatigue initiation and propagation in various materials, with particular attention to metals and structural alloys, and how such behaviour is related to the microstructure of the material.
This course will also introduce key applications of fatigue design in industry, including failure analysis, fatigue life calculations, experimental techniques and destructive and non-destructive methods of damage detection and characterization.
Compétences préalables
- Mathematics, Calculus and Mathematical Analysis
- Linear algebra and analytical geometry
- Material Science and Engineering
- Solid Mechanics
- Basics of mechanics of composite materials
- Basics of computational mechanics, including finite element methods
Objectifs d'apprentissage
- Understand the theory of fracture mechanics applied to brittle, ductile and quasi-brittle materials;
- Know the main experimental techniques for the characterization of the properties that characterize the crack onset and propagation;
- Understand the fatigue phenomenon of materials, including the factors that affect the residual life of structures under cyclic loading and analytical methods for the analysis of fatigue problems;
- Use computational mechanics as a tool to solve fracture mechanics problems;
- Apply the knowledge of fatigue and fracture mechanics for the design of structures and investigation of the causes of structural failure;
Contenu des modules
Introduction to Fracture Mechanics
Linear Elastic Fracture mechanics
- Griffith’s analysis, 1st law of thermodynamics and crack growth, Energy release rate (ERR)
- Stress analysis and stress intensity factor (SIF). Failure modes (mode I, II and III)
- Relation between the SIF and ERR
- Mixed-mode propagation
- Plane stress, plane strain, R-curve, and stability of the propagation
- Experimental determination of the Fracture toughness: standard and non-standard methods
Elasto-plastic fracture mechanics
- Crack opening displacement (COD)
- J integral
- Relation between J-integral, COD and ERR
Fracture in composite materials
- Interlaminar fracture
- Intralaminar fracture
- Failure criteria
Fatigue of metals and composites
- Fatigue limit
- Factors affecting the crack propagation
- Fatigue of composite materials
- Experimental assessment of the fatigue behaviour
Computational fracture mechanics
- Determination of the SIF
- Determination of the J-Integral
- Virtual Crack Closure technique
- Cohesive elements
Méthodes d'enseignement et d'apprentissage
- Lectures in presence
- Tutorial in presence
- Self-study
Télécharger le descriptif complet
Retour