Chaque module vaut 3 ECTS. Vous sélectionnez 10 modules/30 ECTS parmi les catégories suivantes:
- 12-15 crédits ECTS en Modules technico-scientifiques (TSM)
Les modules TSM vous transmettent une compétence technique spécifique à votre orientation et complètent les modules de spécialisation décentralisés. - 9-12 crédits ECTS en Bases théoriques élargies (FTP)
Les modules FTP traitent de bases théoriques telles que les mathématiques élevées, la physique, la théorie de l’information, la chimie, etc., vous permettant d’étendre votre profondeur scientifique abstraite et de contribuer à créer le lien important entre l’abstraction et l’application dans le domaine de l’innovation. - 6-9 crédits ECTS en Modules contextuels (CM)
Les modules CM vous transmettent des compétences supplémentaires dans des domaines tels que la gestion des technologies, la gestion d’entreprise, la communication, la gestion de projets, le droit des brevets et des contrats, etc.
Le descriptif de module (download pdf) contient le détail des langues pour chaque module selon les catégories suivantes:
- leçons
- documentation
- examen
The course targets technical and application challenges related to the design of advanced robotic solutions for industrial and service applications. It addresses the design, engineering and optimization of serial and parallel kinematics robotic arms, as well as of mobile platforms.
The course will cover theoretical content and practical activities of mechanical design, programming and simulation, as well as laboratory experiences with real hardware
Industrial use cases and service use cases will be addressed during the application/laboratory activities, specifically dealing with cutting-edge solutions and challenging markets demanding advanced robotic platform.
The laboratory ctivities will involve the use of industrial robots, cobots, and both commercial and experimental mobile platforms (wheeled and legged), to demonstrate course topics and to support the students in developing their projects and testing some of the designed hardware solutions.
Compétences préalables
- Linear algebra
- Basics of mechanics (statics and kinematics)
- Mechanical design (recommended)
- Basic programming skills
- Basics of robotics (recommended)
Objectifs d'apprentissage
The learning objectives are:
- Ability to select a robotic platform starting from specific use cases requirements as well as productivity and safety KPIs
- Design, engineer, analyze statically and dynamically a robotic solution
- Design accessories (tools, fixturing, sensors), including vision-based perception systems
Contenu des modules
Robotics basics review
- Position and orientation
- Kinematics
- Dynamics
- Trajectory and motion planning
Engineering
of arm-type robots
- Problem statement: reference industrial task
- Serial and parallel robot architectures
- Workcell configuration: kinematic model, reach, tools, sensors
- Structural design, computation of inertias
- Design and dimensioning of actuators and transmission mechanisms
- Tool, fixturing, services design
- Motion simulation and optimization
- Design of vision-based sensing solutions
Engineering
of mobile robots
- Problem statement: reference industrial task
- Kinematic models for wheeled robots
- Kinematic models for legged robots
- Robot configuration: kinematic model, tools, sensors
- Locomotion system design
- Path planning and motion simulation
- Design of vision-based navigation system
Méthodes d'enseignement et d'apprentissage
- Interactive lectures
- Tutorials in presence with lab equipment
- Self-study with exercises and assignments
Bibliographie
P. Corke, “Robotics, Vision and Control”. Springer Cham, 2nd edition (2017).
B. Siciliano, O. Khatib, “Springer Handbook of Robotics”. Springer Berlin, Heidelberg (2008).
Télécharger le descriptif complet
Retour