MSE Master of Science in Engineering

The Swiss engineering master's degree


Chaque module vaut 3 ECTS. Vous sélectionnez 10 modules/30 ECTS parmi les catégories suivantes:

  • 12-15 crédits ECTS en Modules technico-scientifiques (TSM)
    Les modules TSM vous transmettent une compétence technique spécifique à votre orientation et complètent les modules de spécialisation décentralisés.
  • 9-12 crédits ECTS en Bases théoriques élargies (FTP)
    Les modules FTP traitent de bases théoriques telles que les mathématiques élevées, la physique, la théorie de l’information, la chimie, etc., vous permettant d’étendre votre profondeur scientifique abstraite et de contribuer à créer le lien important entre l’abstraction et l’application dans le domaine de l’innovation.
  • 6-9 crédits ECTS en Modules contextuels (CM)
    Les modules CM vous transmettent des compétences supplémentaires dans des domaines tels que la gestion des technologies, la gestion d’entreprise, la communication, la gestion de projets, le droit des brevets et des contrats, etc.

Le descriptif de module (download pdf) contient le détail des langues pour chaque module selon les catégories suivantes:

  • leçons
  • documentation
  • examen 
Machine Learning and Data in Operation (TSM_MachLeData)

 

This module presents powerful techniques to manage the lifecycle of machine learning models, covering in particular baseline models, infrastructure (clusters, cloud, edge AI and resource management) and tooling (frameworks), model training and debugging, model evaluation and tuning, data management (sources, storage, versioning, privacy), systems testing (CI/CD) and explainability, deployment (batch, service, edge), monitoring (data drift) and continual learning. Emphasis is placed on practical tools, real use-case scenarios, and the relevant hardware and software platforms.

Additional topics such as business requirements and objectives, project management for ML, team structure, user experience as well as responsible use of ML systems, including sustainable AI, are also considered.

 

Compétences préalables

 

  • Basic knowledge of machine learning, deep learning, data management and data engineering.
  • Good command of an imperative programming language, basic knowledge of Python.
  • Basic knowledge of probability, statistics, linear algebra (vectors, matrices).

 

Objectifs d'apprentissage

 

  • Recognising the complete lifecycle of machine learning projects, from data requirements to development, deployment, and monitoring.
  • Demonstrating skills in maintaining ML code and data, version and integrate it, and define appropriate environments, with emphasis on practical applications such as data cleaning and preprocessing.
  • Deploying ML models at scale, monitoring their performance and adapting models to changing requirements, with a focus on assessing and adjusting to data drift and shifts in data distribution.
  • Analysing relevant tools and real use-case scenarios, such as real-time services management; critically analysing the implications and applications in practical scenarios.
  • Selecting software and hardware platforms based on the requirements of different scenarios, demonstrating a thorough understanding of the needs and constraints of each.
  • Extracting and integrating insights from guest lectures by industry professionals (subject to availability), demonstrating the ability to interpret expert knowledge from scientific literature and online resources, and applying it effectively to complement their hands-on experience.

Contenu des modules

 

  • Brief recap of machine learning and deep learning.
  • Introduction to the lifecycle of a Machine Learning project.
  • Understanding data needs and requirements for ML projects (e.g. versioning, storage, processing, labeling, augmentation, simulation).
  • ML Development: defining the environment, maintaining the ML code, integrating ML code (versioning, evaluation, baselines).
  • ML Deployment: running models at scale (e.g. batch vs online, model compression, cloud / edge deployment), ensuring system availability, monitoring performance, adapting to changes (data distribution shifts, failures, metrics, logging, continual learning).
  • Exploration of tools and real-world scenarios.
  • Overview of relevant hardware and software platforms.
  • Selection of advanced topics such as:
    • Trustworthy AI (incl. regulatory aspects).
    • Guest lecture(s) from industry professionals (subject to availability).
    • Project management and business perspective (e.g. job roles, teams).

 

Méthodes d'enseignement et d'apprentissage

 

Classroom teaching; programming exercises using MLOps tools and Python (among others); guest lectures from industry professionals (subject to availability).

 

 

Bibliographie

  • Chip Huyen , “Designing Machine Learning Systems: An Iterative Process for Production-Ready Application”, O-Reily, 2022
  • Noah Gift & Alfredo Deza, “Practical MLOps - Operationalizing Machine Learning Models”, O’Reilly, 2021
  • Scientific literature and articles as discussed during the lectures

Télécharger le descriptif complet

Retour