Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie:
- 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)
I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati. - 9-12 crediti ECTS in basi teoriche ampliate (FTP)
I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione - 6-9 crediti ECTS in moduli di contesto (CM)
I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.
La descrizione del modulo (scarica il pdf) riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:
- Insegnamento
- Documentazione
- Esame
The course will focus on the design of advanced aircraft systems, aiming towards more electric types of aircraft for a new generation beyond the Airbus A380 and Boeing 787.
Today, aircraft design is more than just aerodynamics, flight dynamics, propulsion, structures,and equipment. The new technologies require a systems engineering approach, which guides the way towards a sustainable aircraft.
The whole design process will be discussed and the students will learn to do a conceptual and preliminary design.
In this module, the whole design process of a complex system such as an aircraft will be discussed and the students will learn how to do a conceptual and preliminary design. The course is structured in lectures as well as with small case studies (practise), which will be done in groups.
Requisiti
The students are expected to have knowledge of the basics of Fluid Dynamics / Aerodynamics, Structural Mechanics, Thermodynamics (Gas Turbines), and Systems Engineering.
An interest in Aircraft Systems is important.
The knowledge of simulation tools (Matlab, Simulink, Modelica, Comsol, etc.) and performance calculations or optimization calculations is an advantage.
Obiettivi di apprendimento
The students will learn how the design process of a complex system such as an aircraft is done, with a focus on the early stages between concept and the preliminary design stage.
All important disciplines, which play a key role in aircraft design, will be addressed: weight distribution estimation, performance, propulsion, on the basis of systems engineering.
The students will be able to understand the architecture of modern aircraft, focussing on the advancing system integration with the trend towards electric and more environmentally sustainable aircraft.
The students can apply the current design standards and analyze the design of new aircraft for the efficiency and performance of the operation.
Learning experience working in a design team to define an aircraft concept.
Contenuti del modulo
The course will start with an introduction to aircraft conceptual design.
The aerodynamics for wing design, propulsion technology, and engine integration and the electrical, hydraulic and pneumatic systems will be discussed to provide an aircraft architecture from the system point of view.
The available methods of aircraft design optimization will be discussed in the light of perfect design or an illusion of the existence of such.
The concept of increasingly electrical aircraft and the concept of hybrid propulsion for new aircraft layouts will be discussed at the end of the course.
The course will deliver the knowledge to the design of new aircraft generations to meet the reduction of CO2 and noise footprint towards greener aviation.
Metodologie di insegnamento e apprendimento
- Lectures with focus on practical cases for commercial airplanes
- Self study and performance of literature research
- Performance of small case studies for an aircraft design working together with teams which cover different design aspects
Bibliografia
- Aircraft Design: A Conceptual Approach, Daniel P. Raymer, AIAA Education Series
- Fundamental of Aerodynamics, John D. Anderson Jr., McGraw-Hill Series in Aeronautical and Aerospace Engineering
- Airframe Structural Design, Practical Design Information and Data on Aircraft Structures, Michael C. Y. Niu, Hong Kong Conmilit Pres Ltd.
Scarica il descrittivo completo del modulo
Indietro