MSE Master of Science in Engineering

The Swiss engineering master's degree


Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie: 

  • 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)
    I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati.
  • 9-12 crediti ECTS in basi teoriche ampliate (FTP)
    I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione 
  • 6-9 crediti ECTS in moduli di contesto (CM)
    I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.

La descrizione del modulo (scarica il pdf) riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:

  • Insegnamento
  • Documentazione
  • Esame
Cryptography and Coding Theory (FTP_CryptCod)

This course provides the mathematical fundamentals of cryptography and coding theory and illustrates them with numerous practical examples.

Requisiti

No particular prerequisites are required, but fundamental interest in practical applications of mathematics!

Obiettivi di apprendimento

This course provides advanced methods of applied algebra and number theory and concentrates on their practical applications in cryptography and coding theory.

Contenuti del modulo

  • Algebra: algebraic structures (proups, fields), modular arithmetic, Chinesise remainder theorem, constuction and fundamental properties of finite fields (Galois fields GF (pm)), applications to cryptography and coding theory
  • Algorithms in number theory (primality tests, integer factorization methods, elliptic curves), applications to cryptography and coding theory
  • Use of a development environment (Java, C, C++, Python, Sage)

Week

Contents (Order and weighting may be adapted)

1

Algebraic basics:
modular arithmetic, Euclidean algorithm, extended Euclidean algorithm, Bezout theorem, Fermat Euler theorem, Chinese Remainder theorem

2

3

Asymmetric (public key) cryptography:
Diffie Hellman key exchange, RSA algorithm, digital signatures

4

5

Algebraic basics: polynomials and finite fields

6

Symmetric (secret key) cryptography:
review of important examples (substitution cipher, transposition cipher, product cipher, block cipher,etc.)

7

Symmetric (secret key) cryptography: Hash functions,  Data Encryption Standard (DES), Advanced Encryption Standard (AES), Chacha20, modes of operation, authenticated encryption

8

Elliptic Curve Diffie Hellman (ECDH), digital signatures

9

10

One-time pad (OTP), Modern Topics in Cryptography, TLS and X509v3

11

Error-correcting codes:
Cyclic codes, Reed-Solomon, BCH, Convolutional Codes, Turbo Codes

12

13

14

Metodologie di insegnamento e apprendimento

  • Lectures with practical application examples
  • Exercices with solutions allowing knowledge application and deepening

Bibliografia

  • Buchmann, Johannes: Introduction to Cryptography, 2nd. ed., Springer Verlag, 2004, ISBN: 978-0-387-21156-5
  • Stinson, Douglas: Cryptography: Theory and Practice, 3rd ed., Chapman & Hall, 2005, ISBN: 978-1-584-88508-5
  • Zémor, Gilles: Cours de cryptographie, Cassini, 2000, ISBN: 2-84225-020-6

Scarica il descrittivo completo del modulo

Indietro