Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie:
- 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)
I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati. - 9-12 crediti ECTS in basi teoriche ampliate (FTP)
I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione - 6-9 crediti ECTS in moduli di contesto (CM)
I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.
La descrizione del modulo (scarica il pdf) riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:
- Insegnamento
- Documentazione
- Esame
Students learn and experience an advanced approach for designing an autonomous real-time process monitoring system (cyber-physical system)
Requisiti
- General mechanics
- IT basics
Obiettivi di apprendimento
Students learn and experience an advanced approach for designing an autonomous real-time process monitoring system.
This will allow them to experience a development project by directly integrating an expert reflection on the digital autonomy expected of automated mechanisms in the Industry 4.0 world.
They will also be introduced to the multidisciplinary roles that the engineer of tomorrow ill have to play in the face of the challenges of digitization and the advent of intelligent and autonomous machines.
This course uses as a common thread the Micro5 eco-demonstrator developed in the framework of the HES-SO thematic programs (2013-2016) and recently equipped with an original and very advanced cognitive system.
Contenuti del modulo
The learning objectives are to allow the student to develop a critical sense and to experience the steps and difficulties related to defining and developing an artificial intelligence system on a production tool.
The following steps will be covered:
- Positioning and role of the engineer in the digitalization of production means.
- Definition of a cognitive mechatronic system: from machining to control program.
- Definition of the objectives and methods of the system to be developed on the basis of a specific case (e.g., micro milling machine, wear detection, etc.).
- Definition of the tools needed to automate a machine sensors, database, AI, and feedback).
- Development of a cyber-physical production and management system (data selection, signal processing, feedback, real-time processing, data storage, SPC).
- Data analysis and processing.
- Introduction of prior knowledge into the cyber-physical system.
- Development of a digital twin.
Metodologie di insegnamento e apprendimento
Presentation by the professors of the main concepts and themes. Illustration via concrete, applied examples. Week by week, the students will conceive a simulated smart machine.
Students organized in teams will apply the concepts and themes to practical use cases. The application can vary from a case study to the realization of a mini-project in team.
Scarica il descrittivo completo del modulo
Indietro