Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie:
- 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)
I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati. - 9-12 crediti ECTS in basi teoriche ampliate (FTP)
I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione - 6-9 crediti ECTS in moduli di contesto (CM)
I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.
La descrizione del modulo (scarica il pdf) riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:
- Insegnamento
- Documentazione
- Esame
The course starts with an overview of classical engineering physics with special emphasis of balance and constitutive equations (i.e., continuity equations and material laws). The basic concepts of vector analysis are applied to electrodynamics, various transport phenomena, mechanical elasticity and piezo-electric effects. The concept of tensors enables the description of important anisotropic effects of solid state physics. These effects are present in crystals as well as in layered material systems, which are more and more used in modern technology. The given overview facilitates the student’s understanding and application of numerical simulation methods (e.g., FEA, multiphysics).
Requisiti
- Physics, analysis, linear algebra at Bachelor’s level ,
- The mathematical prerequisites are covered by the chapter 7-9 of [4]. The summaries of these chapters are in the appendix of this document.
Obiettivi di apprendimento
- Students are familiar with the most important basic laws of engineering physics for isotropic materials in general view form, recognize analogies between different application areas and exploit these for analyzing systems
- Students know about the generalization of the laws for anisotropic materials and can interpret these, especially with regard to application in numerical simulation
- Students master vector analysis and the algebra of tensors together with the standard notation conventions
- Students understand the basics of electrodynamics and transport phenomena for anisotropic systems
- Students understand mechanical elasticity with 3D strain and stress states and are familiar with the material laws in general form for isotropic and anisotropic bodies
- Students understand the piezo-electric effect and its applications in engineering (sensors and actuators)
Contenuti del modulo
- Recapitulation of isotropic material laws (Ohm, Hook, electric polarization, heat conduction)
- Introduction to vector and tensor calculation: scalar, vectorial and tensorial parameters, tensor algebra,
- Transformation behavior of vectors and tensors
- Hands-on calculation of vector analysis and tensoralgebra: electrodynamics and anisotropic transport phenomena
- Elasticity theory with emphasis on 3D stress states
- Piezo-effect: physical fundamentals
Week | Subject |
MW1 | Introduction, motivation, repetition of fundamental physical laws from engineering physics |
MW2 | Scalars, vectors, divergence, gradient, curl |
MW3 | Integral theorems and applications of vector analysis in physics |
MW4 | Maxwell I: Electro- and magnetostatics |
MW5 | Fundamental mathematical properties of tensors, transformations of tensors |
MW6 | Transport phenomena, Ohm’s law, heat conduction and diffusion |
MW7 | Elasticity: stress and distortion tensor, thermal expansion |
MW8 | Elasticity: Hooke’s law, tensors of the fourth rank, engineering diagram |
MW9 | Elasticity: 3D stress and distortion states |
MW10 | Elasticity: 3D stress and distortion states |
MW11 | Reserve |
MW12 | Maxwell II: Electrodynamics |
MW13 | Maxwell III: Waves, Maxwell |
MW14 | Piezoelectricity |
Metodologie di insegnamento e apprendimento
Frontal teaching (approx. 60 %)
Presentation and discussion of case studies and problems, individual problem solving (approx. 40 %)
Bibliografia
[1] R.E. Newham, Properties of Materials, Oxford, 2005
[2] J.F. Nye, Physical Properties of Crystals, Oxford Science Publication, 2004
[3] J.Tichy, Fundamentals of Piezoelectric Sensorics, Springer 2010
[4] E. Kreszig, Advanced Engineering Mathematics, 10th edition, Wiley, 2011
Scarica il descrittivo completo del modulo
Indietro