MSE Master of Science in Engineering

The Swiss engineering master's degree


Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie: 

  • 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)
    I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati.
  • 9-12 crediti ECTS in basi teoriche ampliate (FTP)
    I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione 
  • 6-9 crediti ECTS in moduli di contesto (CM)
    I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.

La descrizione del modulo (scarica il pdf) riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:

  • Insegnamento
  • Documentazione
  • Esame
Model predictive control (TSM_PredContr)

Model Predictive Control (MPC) is an optimisation-based approach to control systems and processes. The general mathematical formulation of MPC allows it to be applied to a broad range of systems and considers system constraints intrinsically. The advances in optimisation methods and available computational power have made MPC a valuable alternative to classical control approaches also for fast dynamic systems. Today, MPC applications can be found from the original chemical process control systems to the control of frequency converters with sampling periods down to a few microseconds.
This module focuses on introducing MPC from the theoretical basics to the use of tool kits to support the implementation and generation of working code. As the classical frequency domain control methods are not considered here, this module does not need in-depth knowledge of control systems. A general affinity to mathematics and programming skills are beneficial.

Requisiti

  • Linear Algebra
  • Differential equations
  • Basic feedback control and dynamic systems
  • Basic programming skills in Matlab or Python or equivalent
  • General affinity to mathematics(!)

Obiettivi di apprendimento

The student is able to 

  • formulate an optimisation problem and solve it with appropriate tool kits
  • formulate model predictive control problems
  • apply MPC concepts to real world systems and generate executable code which runs on their control systems

Contenuti del modulo

Basic concepts ( 3W)

  • Introduction to state space models in continuous and discrete time
  • Introduction to optimisation (linear quadratic programs) using tool kits like YALMIP
  • Introduction to optimisation with constraints

Basic MPC (3W)

  • Linear MPC problem formulation
  • Receding horizon concepts
  • Limits of MPC

MPC Extensions and examples (5W)

  • Reference tracking
  • Error free tracking
  • Nonlinear optimisation and MPC with nonlinear models
  • Buck converter control (explicit MPC) -- optional
  • Energy management (scheduling) -- optional

 

Real-time implementation(3W)

  • From problem to code using tool kits like ACADO


Metodologie di insegnamento e apprendimento

Lectures with homework assignments which are a mix of theoretical exercises and programming assignments.

 

Scarica il descrittivo completo del modulo

Indietro